import requests
from bs4 import BeautifulSoup
import re
import pandas as pd
defhorse_page_url(url):
req = requests.get(url)
BeautifulSoup(req.content, 'html.parser')
soup = BeautifulSoup(req.content, 'html.parser')
table1 = soup.find('table', attrs={'class':'race_table_01 nk_tb_common'})
table2 = soup.findAll('td', attrs={'class':'txt_l'})
all_data_keiba=[]
for a in table2:
b=a.find('a')
if b != None:
c=b.get('href')
if"horse"in c:
print(c)
data=race_page_url(c)
for i in range(len(data)):
all_data_keiba.append(data[i])
return all_data_keiba
各馬のページからレースのURLを取得します。
defrace_page_url(url):
req = requests.get(url)
BeautifulSoup(req.content, 'html.parser')
soup = BeautifulSoup(req.content, 'html.parser')
race_table = soup.findAll("table")[4]
race_table1 = race_table.find_all("a")
all_data=[]
if race_table1==[]:
race_table = soup.findAll("table")[3]
race_table1=race_table.find_all("a")
for a in race_table1:
b=a.get('href')
if"race"in b
if"2018"in b:
if"list"in b or"sum"in b or"movie"in b:
b=b
else:
if b.islower() == True:
b='https://db.netkeiba.com' + b
race=race_data(b)
horse=horse_page_url2(b)
for i in range(len(horse)):
horse[i]=horse[i]+race
for i in range(len(horse)):
all_data.append(horse[i])
return all_data
defhorse_page_url2(url):
req = requests.get(url)
BeautifulSoup(req.content, 'html.parser')
soup = BeautifulSoup(req.content, 'html.parser')
table1 = soup.find('table', attrs={'class':'race_table_01 nk_tb_common'})
table2 = soup.findAll('td', attrs={'class':'txt_l'})
all_data=[]
data=[]
i=0for a in table2:
b=a.find('a')
if b != None:
c=b.get('href')
if"horse"in c:
c='https://db.netkeiba.com' + c
all_data.append(horse_data(c))
for i in range(len(all_data)-1):
for k in range(i+1,len(all_data)):
data.append(all_data[i]+all_data[k])
all_data2=all_data[::-1]
for i in range(len(all_data2)-1):
for k in range(I+1,len(all_data2)):
data.append(all_data2[i]+all_data2[k])
return data
l=16
q=[]
p=[]
results2=results[::-1]
for i in range(l):
s1=0
b1=0
c1=0
n1=i
b1=(i)*(l-1)-sum(range(1, n1))
c1=(i+1)*(l-1)-sum(range(1, n1 + 1))
a1=l-1for k in range(b1,c1):
s1+=results[k][1]
for k in range(n1):
s1+=results[n1-1][0]
a1-=1
n1+=a1
q.append(s1)
print(q)
for i in range(l):
s2=0
b2=0
c2=0
n2=i
b2=(i)*(l-1)-sum(range(1, n2))
c2=(i+1)*(l-1)-sum(range(1, n2 + 1))
a2=l-1for k in range(b2,c2):
s2+=results2[k][1]
for k in range(n2):
s2+=results2[n2-1][0]
a2-=1
n2+=a2
p.append(s2)
p=p[::-1]
print(p)
for i in range(l):
print(i+1,q[i]+p[i])
from sklearn import preprocessing
model = preprocessing.StandardScaler()
X = model.fit_transform(X_train)
from sklearn import preprocessing
model = preprocessing.StandardScaler()
X_test = model.fit_transform(X_test)